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Abstract
In this paper, we address the problem of wave dynamics in the presence of
concentrated nonlinearities. Given a vector field V on an open subset of C

n

and a discrete set Y ⊂ R
3 with n elements, we define a nonlinear operator

�V,Y on L2(R3) which coincides with the free Laplacian when restricted to
regular functions vanishing at Y, and which reduces to the usual Laplacian with
point interactions placed at Y when V is linear and represented by a Hermitian
matrix. We then consider the nonlinear wave equation φ̈ = �V,Y φ and study
the corresponding Cauchy problem, giving an existence and uniqueness result
when V is Lipschitz. The solution of such a problem is explicitly expressed
in terms of the solutions of two Cauchy problems: one relative to a free
wave equation and the other relative to an inhomogeneous ordinary differential
equation with delay and principal part ζ̇ + V (ζ ). The main properties of the
solution are given and, when Y is a singleton, the mechanism and details of
blow-up are studied.

PACS numbers: 03.65.Ge, 02.30.Tb

1. Introduction

In recent times a great effort has been devoted to the analysis of nonlinear wave equations.
Among the more interesting themes, there are global existence, presence of blow-up solutions
and characterization of their lifespan (see, e.g., [5, 6, 8, 9, 11, 13, 17] and references therein).
These issues are usually quite difficult to analyse due to the scarcity of information about exact
solutions of nonlinear wave equations. In this paper, we study a class of wave equations about
which information on exact solutions is relatively easy to obtain. This class is characterized
by a so-called concentrated nonlinearity, modelled as a nonlinear point interaction in some
fixed finite set of points. To be more precise, we will study abstract wave equations of the
form φ̈ = �V,Y φ, where �V,Y is a nonlinear operator on L2(R3) which coincides with the
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free Laplacian when restricted to regular functions vanishing at the point of Y = {y1, . . . , yn},
a discrete and finite subset of R

3. V ≡ (V1, . . . , Vn) is a vector field on C
n which is related to

the behaviour, at Y, of the functions φ belonging to the domain of �V,Y by

φ(x) = ζ
φ

j

4π |x − yj | + Vj (ζ
φ) + O(|x − yj |), 1 � j � n, x → yj .

The action of �V,Y can then be defined in a suggestive way by

�V,Y φ := �φ +
∑

1�j�n

ζ
φ

j δyj
,

where δy is the Dirac mass at y. We refer to section 2 for the precise definitions. Such a
nonlinear operator reduces to the self-adjoint operator given by the Laplacian with n point
interactions (see [3, 4]) when V (ζ ) = �ζ,� a Hermitian matrix.

In section 3 we then turn to the problem of existence and uniqueness of the Cauchy
problem for the nonlinear wave equation φ̈ = �V,Y φ. The analogous problem for the
nonlinear Schrödinger equation iψ̇ = −�V,Y ψ was studied in [1, 2] in the case of particular
nonlinearities of the kind Vj (ζ ) = γj |ζj |2σj ζj , γj ∈ R, σj � 0, whereas the wave equation
case was studied, when V is linear, in [14–16, 7] when Y is a singleton and in [12] in the
general case. The nonlinear wave equation case was instead totally unexplored. Thus in
theorem 3.1 we provide an existence and uniqueness result when V is Lipschitz. The strategy
of the proof follows the lines of the linear case with the complication due to the lack of a
general existence theorem in this singular situation. Similar to the linear case, the main result
is the relation between the equation φ̈ = �V,Y φ and a coupled system comprising an ordinary
wave equation with delta-like sources and an inhomogeneous ordinary differential equation
with delay driven by the vector field V . This delayed equation controls the dynamics of the
coefficients ζ φ and an almost complete decoupling is achieved, in that it is possible to get
the solution of the problem when the retarded Cauchy problem for the ζ φ (depending in a
parametric way on the initial data of the field φ) is solved, except a term which is the free
wave evolution of the initial data. A similar situation appears (for the particular nonlinearities
indicated above) in the Schrödinger case (see [1]) where however, due to the infinite speed of
propagation of the free Schrödinger equation, an integral Volterra-type equation replaces the
ordinary differential equation.

When the vector field V is of gradient type, a conserved energy for the dynamics exists
(see lemma 3.7) and this provides criteria for global existence (see theorem 3.8). When
there is no global existence, the problem of the characterization of blow-up solutions and
their blow-up rates arises. In the special case where the singularity is at only one point y, a
detailed study is possible (see section 4). The key remark is that the inhomogeneous term in
the equation for the ζ φ is bounded and continuous and there exist simple autonomous first-
order differential equations, the solution of which provides supersolutions and subsolutions
by means of differential inequalities. This allows us to prove in many cases the existence at
large or in contrast the blow-up of the solutions together with, in the latter case, an estimate
of their lifespan. A typical example is a power law nonlinearity, where explicit calculations
are given and in particular for the quadratic nonlinearity, which leads to an equation of Riccati
type.

2. Nonlinear point interactions

Given the vector field V : AV ⊆ C
n → C

n, AV open, and a discrete set Y ⊂ R
3, Y =

{y1, . . . , yn}, we give the definition of a nonlinear operator �V,Y on L2(R3) which reduces
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to the usual Laplacian with point interactions at Y when V is linear and is represented by a
Hermitian matrix.

Definition 2.1. We define the nonlinear subset DV,Y of L2(R3) by the set of φ ∈ L2(R3) for
which there exists an n-tuple of complex numbers ζ φ = (

ζ
φ

1 , . . . , ζ
φ
n

) ∈ AV such that

φreg ∈ H̄ 2(R3) := {
f ∈ L2

loc(R
3) : ∇f ∈ L2(R3),�f ∈ L2(R3)

}
,

where

φreg := φ −
∑

1�j�n

ζ
φ

j Gj , Gj (x) := 1

4π |x − yj | ,

and moreover the following nonlinear boundary conditions hold true at Y,

lim
x→yj

(
φ(x) − ζ

φ

j Gj (x)
) = Vj (ζ

φ), 1 � j � n, (2.1)

where V (ζ ) ≡ (V1(ζ ), . . . , Vn(ζ )). The action of

�V,Y : DV,Y ⊂ L2(R3) → L2(R3)

is then given by

�V,Y φ := �φreg.

The set Y is the singular set of the point interaction. It is the set where the elements of the
domain of �V,Y do not belong to H̄ 2(R3), or better, since H̄ 2(R3) ⊂ Cb(R

3), where they are
unbounded.

Let us define, for any z ∈ C\(−∞, 0],

Gz
i (x) := exp(−√

z|x − yi |)
4π |x − yi | , Re

√
z > 0,

and

(MY (z))ij := (1 − δij )G
z
i (yj ),

〈
Gz

Y , φ
〉
i

:= 〈Gz
i , φ〉.

Then one has the following.

Lemma 2.2. For any z ∈ C\(−∞, 0] such that the function


V,Y (z) : AV → C
n, 
V,Y (z) := V +

√
z

4π
− MY (z)

has an inverse, the nonlinear resolvent of �V,Y is given by

(−�V,Y + z)−1φ = (−� + z)−1φ +
∑

1�i�n

(

V,Y (z)−1

〈
Gz̄

Y , φ
〉)

i
Gz

i .

Proof. We need to solve the equation (−�V,Y + z)ψ = φ. By the definition of �V,Y one has

ψreg = (−� + z)−1φ − z
∑

1�i�n

ζ
ψ

i (−� + z)−1Gi

and

ψreg(yj ) = ((V − MY (0))(ζψ))j = 〈
Gz̄

j , φ
〉 − z

∑
1�i�n

ζ
ψ

i

〈
Gz̄

j ,Gi

〉
.

Since z
〈
Gz̄

j ,Gi

〉 = (MY (0) − MY (z))ij and z
〈
Gz̄

i ,Gi

〉 = 1/4π
√

z, one obtains

ζ φ = 
V,Y (z)−1
〈
Gz

Y , φ
〉
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so that

ψ = (−� + z)−1φ +
∑

1�i�n

(

V,Y (z)−1

〈
Gz̄

Y , φ
〉)

i
(Gi − z(−� + z)−1Gi)

= (−� + z)−1φ +
∑

1�i�n

(

V,Y (z)−1

〈
Gz̄

Y , φ
〉)

i
Gz

i . �

Remark 2.3. The nonlinear resolvent RV,Y (z) := (−�V,Y + z)−1 satisfies the nonlinear
resolvent identity

RV,Y (z) = RV,Y (w)(1 − (z − w)RV,Y (w)).

Thus �V,Y can be alternatively defined as

�V,Y φ := (−RV,Y (z)−1 + z)φ = �φz + z
∑

1�j�n

ζ
φ

j Gz
j

on

DV,Y := Range(RV,Y (z)) =
{

φ ∈ L2(R3) : φ = φz +
∑

1�j�n

ζ
φ

j Gz
j , φz ∈ H 2(R3),


V,Y (z)ζ φ = (φz(y1), . . . , φz(yN))

}
,

the definition being z-independent. In the above definition H 2(R3) := H̄ 2(R3) ∩ L2(R3)

denotes the usual Sobolev space of index 2. For future convenience, we also introduce the
Sobolev spaces of index 1,

H̄ 1(R3) := {
f ∈ L2

loc(R
3) : ∇f ∈ L2(R3)

}
,

and H 1(R3) := H̄ 1(R3) ∩ L2(R3).
Lemma 2.2 also shows that when V is linear and represented by a Hermitian matrix �,

the linear operator ��,Y coincides with the self-adjoint operator giving the usual Laplacian
with n point interactions placed at Y (see [3, 4]).

The form domain of the operator ��,Y , which we denote by ḊY , is the set of
φ ∈ L2(R3) for which there exists an n-tuple of complex numbers ζ φ = (

ζ
φ

1 , . . . , ζ
φ
n

)
such

that φreg ∈ H̄ 1(R3), where φreg ∈ L2
loc(R

3) is defined as before. Note that here no restriction
at all is imposed on the vector ζ φ so that DV,Y ⊂ ḊY . The quadratic form corresponding to
the linear operator −��,Y is then given by

F�,Y (φ) = ‖∇φreg‖2
L2 − (MY ζφ, ζ φ) + (�ζφ, ζ φ)

(see [18]), where (·, ·) denotes the usual Hermitian scalar product on C
n and MY is the

symmetric matrix MY := MY (0).

3. Existence and uniqueness

Theorem 3.1. Let V : AV ⊆ C
n → C

n be Lipschitz, let φ0 ∈ DV,Y and φ̇0 ∈ ḊY . Let
ζ(t), t ∈ (−T , T ), be the unique maximal solution of the Cauchy problem with delay

sgn(t)

4π
ζ̇ j (t) + Vj (ζ(t)) =

∑
i =j

θ(|t | − |yi − yj |)
4π |yi − yj | ζi(t − sgn(t)|yi − yj |) + φf (t, yj ),

ζ(0) = ζ φ0 , 1 � j � n, (3.1)
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where θ denotes the Heaviside function and φf is the unique solution of the Cauchy problem,

φ̈f (t) = �φf (t), φf (0) = φ0, φ̇f (0) = φ̇0. (3.2)

Defining, given s ∈ R,

φ(t, x) := φf (t − s, x) +
∑

1�j�n

θ(|t − s| − |x − yj |)
4π |x − yj | ζj ((t − s) − sgn(t − s)|x − yj |),

one has

φ(t) ∈ DV,Y , φ̇(t) ∈ ḊY , ζ φ(t) = ζ(t − s), ζ φ̇(t) = ζ̇ (t − s)

for all t ∈ (−T + s, T + s) and φ is the unique strong solution of the Cauchy problem,

φ̈(t) = �V,Y φ(t), φ(s) = φ0, φ̇(s) = φ̇0. (3.3)

Moreover, defining the nonlinear map

UV,Y (t) : DV,Y × ḊY → DV,Y × ḊY , t ∈ (−T , T ),

UV,Y (t)(φ0, φ̇0) := (φ(t + s), φ̇(t + s)),

one has, for any t1, t2 ∈ (−T , T ) with t1 + t2 ∈ (−T , T ), the group property

UV,Y (t1)UV,Y (t2) = UV,Y (t1 + t2). (3.4)

We preface to the proof some preparatory lemmata:

Lemma 3.2. Let ξ : (a, b) → C. Then

ξ ∈ L2
loc(a, b) ⇐⇒ ∀t ∈ (a, b), ψ(t) ∈ H 2(R3),

ξ ∈ L2
loc(a, b) ⇐⇒ ∀t ∈ (a, b), ψ̇(t) ∈ H 1(R3),

where ψ is the unique solution of ψ̈(t) = �ψ(t) + ξ(t)G1
i with zero initial data.

Proof. Since the unique solution of ϕ̈(t) = �ϕ(t) + ξ(t)δyi
with zero intitial data (at time

t = 0) is given by

ϕ(t, x) = θ(|t | − |x − yi |)
4π |x − yi | ξ(t − sgn(t)|x − yi |)

and G1
i = (−� + 1)−1δyi

, we have (−� + 1)ψ = ϕ. Thus

‖(−� + 1)ψ(t)‖2
L2 = 1

4π

∫ |t |

0
dr|ξ(t − sgn(t)r)|2

= 1

4π

{∫ t

0 ds|ξ(s)|2, t > 0∫ 0
t

ds|ξ(s)|2, t < 0.

Since, by Fourier transform (we suppose t > 0, the case t < 0 is analogous),√
|k|2 + 1 ˙̂ψ(t) = 1

(2π)3/2

1√
|k|2 + 1

∫ t

0
ds ξ(s) cos(t − s)|k|,

one has

‖√−� + 1ψ̇(t)‖2
L2 = 1

2π2
lim
R↑∞

∫ t

0

∫ t

0
ds ds ′ ξ̄ (s)ξ(s ′)

∫ R

0
dr

r2 cos(t − s)r cos(t − s ′)r
r2 + 1

= 1

4π

∫ t

0
ds|ξ(s)|2 +

1

8π

∫ t

0

∫ t

0
ds ds ′ ξ̄ (s)ξ(s ′)(e−|s−s ′ | + e−2t e−(s+s ′))

�
(

1

4π
+ t2 1 + e−2t

8π

)∫ t

0
ds|ξ(s)|2.



5016 D Noja and A Posilicano

Conversely, ‖√−� + 1ψ̇(t)‖2
L2 for all t ∈ (a, b) implies ξ ∈ L2

loc(a, b) since the second term
in the last equality above is positive. �

Lemma 3.3. Let ϕi be the solutions of the free wave equation with initial data ϕi(0) =
ζiGi, ϕ̇i(0) = ζ̇ iGi . Then

ϕi(t, yi) = sgn(t)

4π
ζ̇ i .

Proof. Since ψ(t) := ϕi(t) − (ζi + t ζ̇ i )Gi satisfies

ψ̈(t) = �ψ(t) − (ζi + t ζ̇ i )δyi

with zero initial data, one obtains

ϕi(t, x) = −θ(|t | − |x − yi |)(ζi + (t − sgn(t)|x − yi |)ζ̇ i)

4π |x − yi | +
ζi + t ζ̇ i

4π |x − yi | ,
and the proof is completed by taking the limit x → yi . �

Lemma 3.4. Let ϕ be the solution of the free wave equation with regular initial data
ϕ(0) ∈ H̄ 2(R3) and ϕ̇(0) ∈ H̄ 1(R3). Then for all y ∈ R

3 there exists ζy ∈ C1(R) with
ζ̈y ∈ L2

loc(R) such that

ϕ(t, y) = sgn(t)

4π
(ζ̇ y(t) − ζ̇ y(0)) + ζy(t).

Moreover,

lim
|t |↑∞

ϕ(t, y) = 0.

Proof. Let us consider the linear operator �1,y corresponding to Y = {y} and V = 1.
Then, by the results in [14, section 3] (also see [12], theorem 3), theorem 3.1 holds true for
�1,y , with φ ∈ C0(R,D1,y) ∩ C1(R, Ḋy) ∩ C2(R, L2(R)). This implies that, by lemma 2.3,
ψ(t) := φ(t) − ζ φ(t)G1

y belongs to H 2(R3) for all t and that ζy ≡ ζ φ ∈ C1(R) since Ḋy is
normed by ‖φ‖2

Ḋy
:= ‖∇φreg‖2

L2 + |ζ φ|2. Since ψ(t) solves the equation ψ̈(t) = �ψ(t) −
ζ̈y(t)G

1
y with initial data ψ(0) ∈ H 2(R3) and ψ̇(0) ∈ H 1(R3), ζ̈y ∈ L2

loc(R) by lemma 3.2.
Moreover, ζy solves the differential equation

sgn(t)

4π
ζ̇ y(t) + ζy(t) = φf (t, y)

so that, by lemma 3.3,

ϕ(t, y) = sgn(t)

4π
(ζ̇ y(t) − ζ̇ y(0)) + ζy(t).

The fact that ϕ(t, y) → 0 as |t | ↑ ∞ follows from the well-known decay properties of the
solution of the free wave equation with regular initial data. �

Remark 3.5. The two previous lemmata show that φf (t, yj ) in (2.1) is made of two pieces:

a continuous and bounded one and another which has a jump of size ζ φ̇0

2π
at the origin. Thus,

by taking the limit t → ±0 in (3.1), ζ̇ (0−) = ζ̇ (0+) = ζ φ̇0 and the forward and backward
solutions match together at the initial time.

Proof of theorem 3.1. Let

ψ(t) := φ(t) −
∑

1�i�n

ζi(t − s)G1
i .
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Since ζ solves (3.1) and φf (·, yi) is almost everywhere derivable with a derivative in
L2

loc(R) by lemmas 3.3 and 3.4, one has that ζ is piecewise C1 with ζ̇ ∈ L∞(−T , T ) and
ζ̈ ∈ L2

loc((−T , T )). Thus ψ(t) ∈ H 2(R3) and ψ̇(t) ∈ H 1(R3) for all t ∈ (−T + s, T + s) by
lemma 3.2 since

ψ̈(t) = �ψ(t) −
∑

1�i�n

ζ̈i(t − s)G1
i .

Since G1
i − Gi ∈ H̄ 2(R3), this implies φreg(t) ∈ H̄ 2(R3) and φ̇reg ∈ H̄ 1(R3), where

φreg(t) := φ(t) −
∑

1�i�n

ζi(t − s)Gi

and

φ̇reg(t) := φ̇(t) −
∑

1�i�n

ζ̇ i(t − s)Gi.

Thus φ̇(t) ∈ ḊY and ζ φ̇(t) = ζ̇ (t − s). Moreover φ(t) ∈ DV,Y , with ζ φ(t) ≡ ζ(t − s) if the
boundary conditions (2.1) hold true for all t ∈ (−T + s, T + s). Since ζ solves (3.1) one has

lim
x→yj

(φ(t, x) − ζj (t − s)Gj ) = φf (t − s, yj ) +
∑
i =j

θ(|t − s| − |yi − yj |)
4π |yj − yi | ζi((t − s)

− sgn(t − s)|yi − yj |) +
ζi((t − s) − sgn(t − s)|x − yj |) − ζj (t − s)

4π |x − yj |
= φf (t − s, yj ) +

∑
i =j

θ(|t − s| − |yi − yj |)
4π |yj − yi | ζi((t − s)

− sgn(t − s)|yi − yj |) − sgn(t − s)

4π
ζ̇ j (t − s) = Vj (ζ(t − s))

and (2.1) are satisfied. Once we know that φ(t) ∈ DV,Y , one has

φ̈ = �φ +
∑

1�j�n

ζj δyj
= �


φ −

∑
1�j�n

ζjGj


 ≡ �V,Y φreg

and so φ solves (3.3).
Suppose now that ϕ is another strong solution of (3.3). Then, by reversing the above

argument, the boundary conditions (2.1) imply that ζ φ solves the Cauchy problem (3.1). By
unicity of the solution of (3.1) one obtains ζ φ(t) = ζ(t − s). Then, defining

ϕf (t) := ϕ(t) −
∑

1�j�n

φj (t − s),

where

φj (t, x) := θ(|t | − |x − yj |)
4π |x − yj | ζj (t − sgn(t)|x − yj |),

one obtains

ϕ̈f = �ϕreg −
∑

1�j�n

(
�φj + ζj δyj

) = �


ϕreg −

∑
1�j�n

(φj − ζjGj )


 = �ϕf ,

i.e., ϕf solves the Cauchy problem (3.2). Thus, by unicity of the solution of (3.2), ϕ = φ.
The proof of (3.4) is standard: by considering the first components of

UV,Y (t)UV,Y (t1)(φ0, φ̇0) and UV,Y (t + t1)(φ0, φ̇0) (with t ∈ [0, t2]) one obtains two strong
solutions of (3.3). They coincide by unicity and so (3.4) holds true. �
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Remark 3.6. By proceeding as in the linear case (see [12]) one can show that the wave
equation φ̈ = �V,Y φ has finite speed of propagation if and only if Vj (ζ ) = Vj (ζj ) for all j .

When the vector field V is of gradient type, the flow UV,Y (t) preserves an energy-like
quantity:

Lemma 3.7. If V = ∇h then

∀t ∈ (−T , T ), EV,Y UV,Y (t) = EV,Y ,

where the energy EV,Y is defined by

EV,Y (φ, φ̇) := 1
2

(‖φ̇‖2
L2 + ‖∇φreg‖2

L2 − (MY ζφ, ζ φ)
)

+ Re(h(ζ φ)).

Proof.
d

dt
‖φ̇‖2

2 = 〈�Y,V φ, φ̇〉 + 〈φ̇,�Y,V φ〉

=
〈
�φreg, φ̇reg +

∑
1�i�n

ζ̇
φ

i Gi

〉
+

〈
φ̇reg +

∑
1�i�n

ζ̇
φ

i Gi,�φreg

〉

= 〈�φreg, φ̇reg〉 −
∑

1�i�n

ζ̇
φ

i φ̄reg(yi) +

〈
φ̇reg,�φreg −

∑
1�i�n

˙̄ζ φ

i φreg(yi)

〉

= 〈�φreg, φ̇reg〉 + (MY ζφ, ζ̇ φ) −
∑

1�i�n

ζ̇
φ

i V̄i(ζ
φ)

+ 〈φ̇reg,�φreg〉 + (ζ̇ φ,MY ζφ) −
∑

1�i�n

˙̄ζ φ

i Vi(ζ
φ)

= d

dt

(−‖∇φreg‖2
2 + (MY ζφ, ζ φ) − 2 Re(h(ζ φ))

)
. �

The above conservation result can be used to obtain a global existence result by standard
arguments:

Theorem 3.8. Let V = � + ∇h with � a Hermitian matrix and h such that

Re(h(ζ )) � c1|ζ |2 − c2, c1 � 0, c2 � 0.

Then the flow UV,Y (t) is global.

Proof. In this case EV,Y (φ, φ̇) = 1
2

(‖φ̇‖2
2 + F�,Y (φ)

)
+ Re(h(ζ )). Since V is of gradient type

and F�,Y is bounded from below (see [3]),

|ζ φ(t)|2 � kEV,Y (φ(t), φ̇(t)) = kEV,Y (φ(0), φ̇(0))

for some positive constant k. �

4. Blowing-up solutions and their lifespan

The solution given in theorem 3.1 can be obviously extended to the spacetime domain

E =
⋂
y∈Y

{(t, x) ∈ R
4 : −T + s − |x − y| < t < T + s + |x − y|}.
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Such a function is a local solution on E in the sense that

∂2
t tφ(t, x) = �


φ −

∑
1�j�n

ζ
φ

j Gj


 (t, x) (t, x) ∈ E φ(s) = φ0 φ̇(s) = φ̇0.

Note, however, that no boundary conditions can be imposed on φ at times t /∈ (−T + s, T + s),
since {t} × Y is not included in E when t /∈ (−T + s, T + s).

If ζ(t) blows up at times ±T then the above local solution has a blow-up boundary given
by ∂E.

Now we turn to the detailed analysis of the case in which Y = {y}, so that there is no delay
in (3.1). Since (by direct verification) the backward solution ζ− of (3.1) is related to a forward
solution by ζ−(t) = ζ−

+ (−t), where ζ−
+ is the forward solution of (3.1) with inhomogeneous

term φf (−t, y), we will concentrate the analysis on the solutions of the system

ζ̇ (t) + V (ζ(t)) = g(t) ζ(0) = ζ0

where g(t) is continuous and g(t) = g0 + g1(t) with g1(t) → 0 as |t | ↑ ∞ (see remark 2.5).
We will study the equation in a real framework, i.e. we suppose that the fields φ and V are
real-valued. Hence ζ(t) ∈ R. Moreover, to fix ideas, let us consider a continuous function
V : R → R, and regular enough to ensure local existence and unicity of the solution of the
differential equation.

Let us begin by considering preliminarily the case in which g(t) = g0 is constant. This
gives the autonomous differential equation ż + V (z) = g0 with equilibrium (constant) solutions
given by the z which satisfy the equation V (z) = g0. Let us fix an initial datum z0 = z(0) not
belonging to such a set. Correspondingly, in the interval of existence of the solution the term
g0 − V (z(t)) has constant sign by continuity, and the solution z(t) is implicitly given by the
relation ∫ z(t)

z0

ds

g0 − V (s)
= t.

This implies an elementary but fundamental remark. The solution of the auxiliary equation is
global if and only if both the improper integrals∫ ±∞

z0

ds

g0 − V (s)

diverge. If, in contrast, at least one of them converges, the solution blows up in the past or in
the future and the backward or forward lifespan T± of the solution is given just by the value
of one of such integrals.

Now the main point is to include in the analysis the time-dependent term g1(t). The
presence of this term is an essential preclusion to the possibility of writing down a closed
formula for the solution of our differential equation, and one has to resort to other methods. A
first remark is that the time-dependent term g1(t) is bounded. This suggests that the behaviour
of the solution of the inhomogeneous equation could not be affected so much by this term. The
idea is to use differential inequalities to confront the size of solutions of the two equations.
Roughly speaking, a solution greater or lower than a function blowing up to +∞ or −∞,
respectively, is blowing up; and a solution which is bounded between two functions finite at
every finite time is global in time. Both situations occur, and both can occur for the same
coupling depending on the initial data. The analysis is based on differential inequalities
which relate the solution of a comparison auxiliary equation with the solution of the given
equation. We recall briefly that the defect operator P associated with the differential equation
ż(t) = F(t, z(t)) is given by

P(t, z) := ż − F(t, z(t)).
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Comparison of defect operator leads to important and classical differential inequalities (see,
e.g., [19]):

Theorem 4.1. Let z−(0) � z(0) � z+(0) and

P(t, z−) � 0 = P(t, z) � P(t, z+), t ∈ [a, b].

Then one has z−(t) � z(t) � z+(t) in [a, b].

Correspondingly, with a terminology introduced by Perron, z− is called a subsolution and
z+ is called a supersolution.

Now, let us define K := supt∈R|g(t)| and consider the couple of differential equations

ż±(t) + V (z±(t)) = ±K

with initial conditions z−(0) � ζ0 and z+(0) � ζ0. It is immediate to see that one has the
following inequalities between defect operator:

P(z−, t) = g(t) − K � 0 = P(t, ζ ) � g(t) + K = P(t, z+).

So z− is a subsolution and z+ is a supersolution of ζ . Of course to a subsolution z− positively
blowing up in the future with a lifespan T+ corresponds to a solution ζ positively blowing up
with a lifespan T∗ < T+. A similar reasoning applies to negatively blowing up supersolutions.
Since by theorem 3.1 UV,Y (−t) = UV,Y (t)−1, we do not take account of solutions blowing up
in the past. Summarizing, we obtain the following criterion for global existence or blow-up:

Theorem 4.2. Let φ(t) be the solution of the Cauchy problem (3.3) with ζ0 = ζ φ(0) and put
K := supt∈R|φf (t, y)|:
(1) φ is a global solution if the integrals∫ ±∞

ζ0

ds

K + V (s)
,

∫ ±∞

ζ0

ds

K − V (s)

diverge;
(2) φ is positively blowing up in the future if

−
∫ +∞

ζ0

ds

K + V (s)

converges to a positive value. The value of such an integral gives an upper bound of the
lifespan T∗. An analogous statement holds true for solutions negatively blowing up in the
future.

Remark 4.3. Note that the constant K depends on both φ(0) and φ̇(0). So as it should be
expected, the complete set of initial data determines the global existence or blow-up of the
solution.

Remark 4.4. Another very simple criterion of global existence is the following: suppose
that both the sets S± = {s± : V (s) = ±K} are not void. Then any s± ∈ S± provide
global (stationary) super- and subsolutions. This gives global existence for solutions with
s− � ζ0 � s+.
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4.1. Examples

Typical nonlinearities in model equations are given by a power law, or more generally
polynomial couplings. They are essentially to be considered as phenomenological choices,
typically originated by some ad hoc truncation of a Taylor approximation of more general
couplings.

Let us consider the function

V (ζ ) = γ |ζ |σ ζ, γ > 0, σ ∈ R.

The auxiliary equations

ż± = −γ |z±|σ z± ± K

have the equilibrium solutions s± = ±(
K
γ

) 1
σ+1 . Thus, by remark 4.4, one has a global solution

for any initial data with |ζ0| �
(

K
γ

) 1
σ+1 . For data with |ζ0| >

(
K
γ

) 1
σ+1 and for σ > 0, the integral∫ ∞

ζ0

ds

γ |s|σ s + K

converges and so in this case we have blow-up with a lifespan

|T∗| <

∫ ∞

ζ0

ds

γ |s|σ s + K
.

A nonlinearity which deserves attention is given by V (ζ ) = αζ 2. This admits an analysis
analogous to the one just devised and corresponds to a quadratic nonlinearity in the abstract
wave equation. The peculiarity is that in this case (3.1) is a Riccati equation, one of the better
known nonlinear differential equations of the first order and one with wide applications in
mathematics and sciences. One of the more striking properties of the Riccati equation is that
by a nonlinear transformation of the unknown function, it can be reduced to a second-order
linear differential equation, and this fact appears as particularly noteworthy in our context,
where the original problem is a wave equation with a quadratic (concentrated) nonlinearity.
We were not able, till now, to judge about the relevance of this fact, which seems to deserve
further investigation. Another well-known property of Riccati equation is the fact that it admits
always at least one nonglobal solution (see, e.g., [10]) when the time-dependent term g(t) is
an algebraic function. Of course, there is no hope that the evaluation at y of a solution of a
free wave equation be an algebraic equation, at least for generic data, but in our case, thanks
to the properties of φf (t, y), the simple majorizations above allow us to obtain blowing-up
solution also in the case of nonalgebraic inhomogeneous terms. Moreover, another important
fact about blowing-up solutions of the Riccati equation is the typical behaviour of the solution
in the proximity of the blow-up time T∗ lifespan, which is of the type

ζ(t) ∼ 1

t − T∗
.

This gives, in view of the relation between the time behaviour of the ζ(t) and the behaviour
of the solution, the qualitative asymptotic spacetime behaviour of the solution of the wave
equation with quadratic concentrated nonlinearity near the blow-up time, which is of the type

φ(t, x) ∼ 1

t − T∗ − |x − y|
1

|x − y| .

Similar consideration holds for the power nonlinearities analysed above, or other non-
polynomial couplings for which a precise analysis of the ζ(t) equation is feasible.
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